update meshoptimizer to 0.16

This commit is contained in:
Hendrik Brucker
2021-04-18 16:15:43 +02:00
parent c05245f539
commit 9d18610190
8 changed files with 897 additions and 123 deletions

View File

@ -1,7 +1,7 @@
/**
* meshoptimizer - version 0.15
* meshoptimizer - version 0.16
*
* Copyright (C) 2016-2020, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Copyright (C) 2016-2021, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Report bugs and download new versions at https://github.com/zeux/meshoptimizer
*
* This library is distributed under the MIT License. See notice at the end of this file.
@ -12,7 +12,7 @@
#include <stddef.h>
/* Version macro; major * 1000 + minor * 10 + patch */
#define MESHOPTIMIZER_VERSION 150 /* 0.15 */
#define MESHOPTIMIZER_VERSION 160 /* 0.16 */
/* If no API is defined, assume default */
#ifndef MESHOPTIMIZER_API
@ -97,6 +97,35 @@ MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destinati
*/
MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
/**
* Generate index buffer that can be used as a geometry shader input with triangle adjacency topology
* Each triangle is converted into a 6-vertex patch with the following layout:
* - 0, 2, 4: original triangle vertices
* - 1, 3, 5: vertices adjacent to edges 02, 24 and 40
* The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY.
* This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering.
*
* destination must contain enough space for the resulting index buffer (index_count*2 elements)
* vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
*/
MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
/**
* Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement
* Each triangle is converted into a 12-vertex patch with the following layout:
* - 0, 1, 2: original triangle vertices
* - 3, 4: opposing edge for edge 0, 1
* - 5, 6: opposing edge for edge 1, 2
* - 7, 8: opposing edge for edge 2, 0
* - 9, 10, 11: dominant vertices for corners 0, 1, 2
* The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping.
* See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details.
*
* destination must contain enough space for the resulting index buffer (index_count*4 elements)
* vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
*/
MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
/**
* Vertex transform cache optimizer
* Reorders indices to reduce the number of GPU vertex shader invocations
@ -373,22 +402,31 @@ MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetc
struct meshopt_Meshlet
{
unsigned int vertices[64];
unsigned char indices[126][3];
unsigned char triangle_count;
unsigned char vertex_count;
/* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */
unsigned int vertex_offset;
unsigned int triangle_offset;
/* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */
unsigned int vertex_count;
unsigned int triangle_count;
};
/**
* Experimental: Meshlet builder
* Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
* The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
* For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
* When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters.
* When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
*
* destination must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
* max_vertices and max_triangles can't exceed limits statically declared in meshopt_Meshlet (max_vertices <= 64, max_triangles <= 126)
* meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
* meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices
* meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3
* vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
* max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512)
* cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
*/
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);
struct meshopt_Bounds
@ -426,10 +464,10 @@ struct meshopt_Bounds
* to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable.
*
* vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
* index_count should be less than or equal to 256*3 (the function assumes clusters of limited size)
* index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size)
*/
MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const struct meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
/**
* Experimental: Spatial sorter
@ -513,6 +551,10 @@ inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices,
template <typename T>
inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
template <typename T>
inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
template <typename T>
inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count);
template <typename T>
inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count);
@ -547,7 +589,9 @@ inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size
template <typename T>
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
template <typename T>
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
template <typename T>
inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
template <typename T>
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
template <typename T>
@ -761,6 +805,24 @@ inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indi
meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count);
}
template <typename T>
inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count * 2);
meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
template <typename T>
inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
meshopt_IndexAdapter<T> out(destination, 0, index_count * 4);
meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
}
template <typename T>
inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
{
@ -908,11 +970,19 @@ inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices
}
template <typename T>
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
return meshopt_buildMeshlets(destination, in.data, index_count, vertex_count, max_vertices, max_triangles);
return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight);
}
template <typename T>
inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
{
meshopt_IndexAdapter<T> in(0, indices, index_count);
return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles);
}
template <typename T>
@ -934,7 +1004,7 @@ inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_
#endif
/**
* Copyright (c) 2016-2020 Arseny Kapoulkine
* Copyright (c) 2016-2021 Arseny Kapoulkine
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation